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I. GENERAL INTRODUCTION TO AGING RESEARCH 

 

Aging research has evolved from understanding why we age to exploring ways to 

extend lifespan and healthspan. Key theories include Medawar’s mutation accumulation 

and Williams’ antagonistic pleiotropy, which explain aging as a consequence of 

evolutionary trade-offs. The hallmarks of aging framework identifies biological processes 

like genomic instability, mitochondrial dysfunction, and stem cell depletion as targets for 

intervention. 

Aging is driven by interconnected pathways, including oxidative stress, 

mitochondrial decline, and insulin/IGF signaling (IIS). ROS-induced damage accelerates 

aging, while reduced IIS activity extends lifespan, as seen in daf-2 (C. elegans) and InR 

(Drosophila) mutants. Understanding these mechanisms offers potential anti-aging 

interventions. 

Model organisms like Drosophila, C. elegans, and mice are essential for aging 

research. Drosophila is widely used due to its short lifespan, genetic tools, and 70% gene 

similarity with humans. It has helped elucidate IIS, TOR, and gut microbiome interactions 

in aging. Aging-associated microbiome shifts influence immune responses, with 

Drosophila studies showing microbial balance impacts lifespan and health. 

By studying aging pathways in model organisms, researchers aim to develop 

targeted strategies to slow aging and prevent age-related diseases. Drosophila 

melanogaster remains a key system for testing genetic and pharmacological approaches to 

aging research. 
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Figure I.1. Gastrointestinal tract and mechanism of AMPs in Drosophila 

immune response. Adapted from Hanson and Lemaitre, 2020, "New insights on 

Drosophila antimicrobial peptide function in host defense and beyond," Current Opinion in 

Immunology, 62, 22-30. https://doi.org/10.1016/j.coi.2019.11.008. Created in BioRender. 

Sarghie, L. (2024) https://BioRender.com/q02f682 
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II. SYNERGYAGE DATABASE AND ITS ROLE IN AGING RESEARCH 
 

Acknowledgement: Some of the results discussed in this chapter were previously 

published in: Bunu, G., Toren, D. et al., Scientific Data 7, 366 (2020). 

https://doi.org/10.1038/s41597-020-00710-z  

 

II.1. Introduction to SynergyAge 

SynergyAge is a curated database of longevity-associated gene (LAG) interactions, 

highlighting synergistic and antagonistic effects on lifespan. Predicting interactions among 

gene mutations is challenging due to epistasis, which SynergyAge addresses by integrating 

lifespan data from C. elegans, D. melanogaster, and M. musculus. It classifies genetic 

interactions as additive, dependent, synergistic, or antagonistic, providing insights into 

aging regulation. 

The database features an interactive platform for network-based gene analysis, 

supporting lifespan study design and predictive modeling. It serves as a key resource for 

aging research by cataloging lifespan data and facilitating cross-species comparisons. 

During my studies, I contributed to SynergyAge curation (Bunu et al. 2020), 

focusing on D. melanogaster and partly C. elegans data. My role involved collecting and 

verifying lifespan studies, standardizing gene interactions, and ensuring consistency in 

gene names and study details. By categorizing interactions, I aimed to enhance 

accessibility, making SynergyAge a practical tool for understanding genetic influences on 

aging. 

II.2. Methods 

To evaluate the impact of combining two genetic mutations, lifespan measurements 

were taken for four strains: the wild type (WT), two single mutants (G1 and G2), and the 

double mutant (G1;G2). Each mutant’s effect on lifespan was calculated as a percentage 

difference from the wild type, using the following formulas: 

 

 ∆𝐺1 =  (𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛(𝐺1)−𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛(𝑊𝑇)) × 100
𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛(𝑊𝑇)

 ∆𝐺2 =  (𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛(𝐺2)−𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛(𝑊𝑇)) × 100
𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛(𝑊𝑇)

As mentioned in Bunu et al., 2020, for cases where both mutations positively 

impacted lifespan (ΔG1 × ΔG2 > 0), the combined effects were assessed and categorized as 

follows: 
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● Fully synergistic if ∣Δ(G1,G2)∣>∣ΔG1∣+∣ΔG2∣|Δ (G1, G2)| > |Δ G1| + |Δ 

G2|∣Δ(G1,G2)∣>∣ΔG1∣+∣ΔG2∣ 

● Additive if ∣Δ(G1,G2)∣≈∣ΔG1∣+∣ΔG2∣|Δ(G1, G2)| ≈ |ΔG1| 

+|ΔG2|∣Δ(G1,G2)∣≈∣ΔG1∣+∣ΔG2∣ 

● Almost additive when ∣Δ(G1,G2)∣|Δ(G1, G2)|∣Δ(G1,G2)∣ lies between 

max (∣ΔG1∣,∣ΔG2∣)\max(|Δ G1|, |Δ G2|)max(∣ΔG1∣,∣ΔG2∣) and ∣ΔG1∣+∣ΔG2∣|Δ 

G1| + |ΔG2|∣ΔG1∣+∣ΔG2∣ 

● Dependent (antagonistic) if ∣Δ(G1,G2)∣<max (∣ΔG1∣,∣ΔG2∣)|Δ (G1, G2)| < 

\max(|ΔG1|, |Δ G2|)∣Δ(G1,G2)∣<max(∣ΔG1∣,∣ΔG2∣) but greater than 

min (∣ΔG1∣,∣ΔG2∣)\min(|Δ G1|, |Δ G2|)min(∣ΔG1∣,∣ΔG2∣) 

● Fully antagonistic if ∣Δ(G1,G2)∣<min (∣ΔG1∣,∣ΔG2∣)|Δ (G1, G2)| < \min(|Δ G1|, |Δ 

G2|)∣Δ(G1,G2)∣<min(∣ΔG1∣,∣ΔG2∣) 

Multiple such epistasis interactions have been curated for SynergyAge. To 

exemplify, several graphical representations are included below (Figure II.1) to illustrate 

these interactions among specific Drosophila LAG combinations 
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Figure II.1. Graphical Representations of Selected Synergistic and 

Antagonistic Interactions in Drosophila Longevity-Associated Genes (a) almost 

additive (positive), (b) fully synergistic (positive), ( c ) opposite effects of single mutants, 

(d) dependent interactions, (e) negative synergism, and (f) positive antagonism.  Created 

in BioRender. Sarghie, L. (2024) https://BioRender.com/q02f682 

II.3. Conclusions 

By bringing together data on single and multi-gene mutants, SynergyAge allows us 

to understand both supportive and opposing effects among longevity-associated genes. Its 

interactive interface makes it easy to sift through complex data, identify meaningful 

patterns, and visualize interactions that could shape future research. 

For Drosophila, where data are still limited, this study highlighted key interaction 

types, showcasing how SynergyAge can guide research even when data gaps exist. With its 
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intuitive design and thorough curation, SynergyAge not only provides researchers with 

immediate insights but also supports the development of more targeted experiments in the 

quest to uncover the genetic foundations of aging. 

 

III. GENE INTERACTIONS FROM SYNERGYAGE: EXPLORING NOVEL 
PATHWAYS IN AGING 

 Some of these results were accepted for publication in Vol. 28, No. 5 (2023) of the 

Romanian Biotechnological Letters journal 

 

III.1. Introduction 

 Drosophila melanogaster has been crucial in aging research, with nearly 200 

longevity-associated genes documented in GenAge (Tacutu et al., 2018). While C. elegans 

has over 1,770 recorded gene interactions affecting lifespan, Drosophila remains 

underexplored, with only 27 known combinations (Bunu et al., 2020). Expanding this 

research could reveal conserved aging pathways. 

This study uses SynergyAge to investigate Drosophila gene interactions, focusing 

on InR and G⍺O, orthologs of daf-2 and odr-3 in C. elegans. It is the first to 

experimentally assess G⍺O’s role in Drosophila aging. Since InR regulates the conserved 

insulin/IGF-1 signaling (IIS) pathway, reducing its activity extends lifespan by enhancing 

stress resistance (Krishnan et al., 2024). G⍺O, linked to nervous system development and 

apoptosis, may also influence longevity. 

Inspired by C. elegans studies showing synergistic lifespan extension, this research 

tests whether co-manipulation of InR and G⍺O in Drosophila extends lifespan, offering 

insights into conserved aging mechanisms. 

 

III.2. Methods 

This study integrates multiple data sources to investigate gene interactions affecting 

longevity in Drosophila melanogaster. Protein-protein interactions were obtained from 

BioGRID, while lifespan-related synergistic gene interactions were identified using the 

SynergyAge database. Cross-species comparisons between Caenorhabditis elegans and 

Drosophila were facilitated using the orthogene package. 

For data visualization, Cytoscape (v3.10.1) was employed to map and analyze 

complex genetic interactions. The experimental Drosophila strains, including G⍺O and 

InR mutants, were sourced from the Bloomington Drosophila Stock Center, with the 
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Canton-S strain serving as a control. Flies were cultured on Nutri-Fly™ Bloomington 

Formulation medium. 

To generate double and triple mutants for lifespan experiments, targeted genetic 

crosses were performed under controlled conditions. This included producing G⍺O - InR, 

G⍺O - eIF, eIF - InR, and G⍺O - eIF - InR mutants. The crossing strategies, experimental 

design, and mutant selection were carefully structured and are summarized in Figure III.1. 

The lifespan assay was conducted using synchronized groups of Drosophila 

melanogaster (equal numbers of males and females), housed at a density of 27–32 flies per 

vial. Flies were transferred to fresh food vials every 2–3 days, with mortality recorded 

throughout their lifespan. Transfers were performed without anesthesia to prevent 

stress-related mortality, particularly in older flies. 

For data analysis, median lifespan was calculated, and Kaplan-Meier survival 

curves were generated. Group comparisons were performed using the log-rank test, while 

the Gompertz-Makeham model was applied to assess whether lifespan changes were due to 

alterations in aging rate or overall healthspan. 

 

 Figure III.1. Crosses to Create the Double Mutant G⍺O - InR. 

Straight lines with arrows show crosses between distinct genetic lines, while loops 

indicate mating within the same line. This figure was previously published in Romanian 

Biotechnological Letters, currently in press. Created in BioRender. Sarghie, L. (2024) 

https://BioRender.com/q02f682 
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III.3. Results and Discussion 

This section presents the analysis of networks constructed to investigate 

longevity-associated genes (LAGs) through identified protein-protein interactions and 

predicted synergistic relationships. These networks provide a framework for understanding 

potential lifespan-regulating pathways in Drosophila melanogaster, with a focus on critical 

interactions like those between InR and GalphaO. By examining network structures, key 

nodes, and connections, we aim to reveal insights into genetic interactions that influence 

aging processes. 

Additionally, lifespan results for both single and double mutants of GalphaO and 

InR are discussed here, highlighting how these specific gene alterations impact lifespan 

extension. Comparisons between single-gene mutants and the GalphaO - InR double 

mutant reveal differences in longevity outcomes, helping to identify whether combined 

gene effects lead to additive, synergistic, or independent impacts on lifespan regulation. 

One key network (Figure III.2d) focuses on potential LAGs directly connected to 

G⍺O and InR, derived from the BioGRID interactome. By examining first-degree 

interactions, this network highlights primary gene connections that may play a role in 

lifespan regulation in Drosophila. 

      

Figure III.2. Overview of Longevity-Associated Gene (LAG) Networks in 

Drosophila melanogaster (a) the full Drosophila interactome, (b) C. elegans ortholog 

LAGs, (c) Drosophila-specific LAG combinations from SynergyAge, and (d) first-degree 

interactions of GαO and InR. 
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Next, I examined the lifespan of Drosophila melanogaster mutants GαO, InR, and 

their double mutant GαO; InR in comparison to the Canton-S wild-type control (Figure 

III.3). The lifespan of the Canton-S control reached a maximum of 42 days. In contrast, the 

InR mutant demonstrated a moderate increase to 62 days (Figure III.3a; p < 0.0001), while 

the GαO mutant showed a more substantial increase, with a maximum lifespan of 72 days 

(Figure III.3b; p < 0.0001). Notably, the GαO; InR double mutant had a lifespan of 65 

days, intermediate between the single mutants but shorter than that of GαO alone (Figure 

III.3c; p < 0.0001). 

 

Figure III.3. Survival Curves and Comparative Lifespan Analysis 

(a) Lifespan of Canton-S and the InR mutant; (b) Comparative lifespan of Canton-S and 

the GαO mutant; (c) Lifespan comparison between Canton-S and the GαO; InR double 

mutant; (d) Survival comparison among InR, GαO single mutants, and the GαO; InR 

double mutant. This figure was previously published in Romanian Biotechnological 

Letters, currently in press. 
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Statistical analyses revealed significant lifespan differences between both InR and 

GαO single mutants and the Canton-S control (p < 0.0001), as well as between the GαO; 

InR double mutant and control. While both single mutants exhibited lifespan extension, the 

GαO mutant lived longer than the InR mutant (p = 0.0145). However, there was no 

significant difference between the GαO single mutant and the GαO; InR double mutant (p 

> 0.05), indicating that combining these mutations does not enhance lifespan further, 

suggesting a dependent rather than synergistic interaction. 

The GαO mutation extended lifespan to 72 days, pointing to the role of 

G-protein-coupled receptor (GPCR) signaling in longevity, a pathway known to regulate 

neuronal activity and metabolism (Krishnan et al., 2024; Devambez et al., 2013). The InR 

mutant, with a lifespan of 62 days, aligns with the insulin/IGF-1 signaling (IIS) pathway, a 

well-known regulator of aging (Bai et al., 2013; Kaletsky and Murphy, 2010). The GαO; 

InR double mutant (65 days) did not show additional lifespan extension over GαO alone, 

suggesting overlapping or dependent mechanisms rather than independent effects. 

The lack of a synergistic effect is consistent with patterns in the SynergyAge 

database, which suggests that non-additive interactions are common in aging-related 

pathways. This finding indicates that IIS and GPCR signaling may converge on shared 

downstream targets, explaining the absence of an additive lifespan effect. Given that both 

pathways influence metabolism, stress response, and neuronal signaling, their interaction 

might involve shared regulatory mechanisms. 

These results contribute to a broader understanding of genetic interactions in aging, 

highlighting the need to study overlapping pathways. Future research should explore the 

molecular interplay between GαO and InR and investigate how environmental factors, such 

as the gut microbiome, might modulate these genetic effects on lifespan. 

 

IV.4. Conclusions 

 This study highlights how specific genetic pathways interact to influence aging in 

Drosophila melanogaster. By examining single mutants of GαO and InR alongside their 

double mutant, we observed that while each gene mutation individually extends lifespan, 

combining them in the double mutant does not provide any extra longevity benefit beyond 

what GαO alone achieves. This suggests that these genes may act on overlapping pathways 

with a shared limit on lifespan extension, particularly involving the IIS and GPCR 

signaling pathways. 
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The network analyses, supported by SynergyAge data, reveal that such non-additive 

effects are a common feature in aging pathways, suggesting that genetic interactions in 

lifespan regulation are more complex and interconnected than a simple additive model. 

These findings deepen our understanding of how Drosophila genes contribute to aging and 

underscore the importance of looking further into the molecular connections between GαO 

and InR. Future research should also explore how external factors, like the gut microbiome, 

might interact with these genetic pathways to influence lifespan, potentially opening new 

avenues for aging research.  

 

IV. GENETIC INTERVENTIONS IN DROSOPHILA: ROLE OF PARKIN 
GENE IN MICROBIOME AND AGING 

Acknowledgement: These findings are part of a manuscript ready for submission, 

based on research conducted at the University of California, Los Angeles (UCLA) within 

Dr. David Walker's lab in the Department of Integrative Biology and Physiology. This 

research was supported by a Fulbright Scholarship awarded by the Romanian government. 

IV.1. Introduction 

The Parkin gene (PARK2), a key regulator of mitophagy and protein degradation, 

protects against oxidative stress and neurodegeneration (Kitada et al., 1998; Narendra et 

al., 2008). Mutations in PARK2 are linked to early-onset Parkinson’s disease (PD) and 

impair mitochondrial function, accelerating aging and disease progression (Clark et al., 

2006). While PD has been associated with gut microbiome alterations (Khedr et al., 2021), 

the impact of Parkin overexpression on microbiome composition remains unexplored. 

This study examined Parkin overexpression in Drosophila melanogaster using 

daGS>UAS-Parkin flies across days 10, 30, 45, and 60. 16S rRNA sequencing revealed 

that Parkin modulates microbiome composition in an age-dependent manner. Older control 

flies (day 60) had higher microbial loads (Acetobacter, Lactobacillus) compared to 

Parkin-overexpressing flies, while younger Parkin-overexpressing flies (day 10) showed 

increased Acetobacter, Enterobacter, and Lactobacillus (Fig. IV.2). 

Further analysis showed that Parkin-overexpressing flies had fewer bacterial 

species by day 45, with Commensalibacter stabilizing gut microbiota (Fig. IV.4). Beta 

diversity analysis confirmed Parkin’s influence on microbiome structure, particularly in 

fermentation-related genera (Fig. IV.11 & 12). 
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Microbiome transplants into germ-free Canton-S flies showed that older control 

microbiomes (days 30, 60) reduced lifespan, while Parkin-overexpressing microbiomes 

maintained stability (Fig. IV.13). Additionally, AMP analysis revealed that control 

microbiomes induced inflammatory responses, whereas Parkin-overexpressing 

microbiomes prevented immune activation (Fig. IV.14). 

These findings suggest Parkin overexpression shapes microbiome composition, reducing 

age-related inflammatory shifts and preserving microbial stability, highlighting a potential 

role in aging regulation beyond mitochondrial quality control.  

 

IV.2. Methods 

This study explored the impact of parkin gene overexpression and aging on the gut 

microbiome, lifespan, and immune responses in Drosophila melanogaster. The 

experimental workflow is summarized in Figure IV.1., which outlines the two main 

experimental components: midgut sampling for microbiome analysis, and lifespan and 

immune response assessment. 
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Figure IV.1. Experimental Workflow Diagram. (a) Midgut Dissections and 

Microbiome Analysis: Illustration of the midgut sampling from Control (Uninduced) and 

Parkin Overexpressed (Induced) Drosophila melanogaster at different ages (days 10, 30, 

45, and 60), followed by microbial DNA extraction, relative abundance analysis, 

metagenomic sequencing, and network analysis of microbiome-associated genes. (b) 

Lifespan and Immune Response Assessment: Depiction of the lifespan assay and AMP 

(antimicrobial peptide) assessment, where germ-free Canton-S flies, after microbiome 

reintroduction from different aged samples, undergo lifespan measurement and AMP level 
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analysis post-RNA extraction on day 35. Created in BioRender. Sarghie, L. (2024) 

https://BioRender.com/q02f682 

This study used Canton-S wild-type and daGS>UAS-Parkin flies, with Parkin 

overexpression induced via the RU486 GeneSwitch system. Flies were reared on 

cornmeal-based media, and three-day-old females were synchronized for experiments. 

Lifespan was assessed by administering RU486 (5 µg/ml), with ethanol-treated controls. 

Flies were kept in groups of 27–32 per vial, transferred every 2–3 days, and monitored 

until death. 

For microbiome reassociation, axenic Canton-S flies were generated via a 20-day 

antibiotic treatment, confirmed by culture tests. Microbiomes from daGS>UAS-Parkin 

flies (young, middle-aged, old; RU486+/-) were reintroduced, and flies were maintained 

for 10 days before returning to standard food. 

Microbiome composition was analyzed via 16S rRNA sequencing. DNA was 

extracted from dissected midguts, and the V4 region was sequenced on Illumina MiSeq. 

Bioinformatic analysis (DADA2, Picrust2) provided taxonomic and functional insights. 

qPCR quantified microbial abundance (total 16S, Lactobacillus, Acetobacter, 

Enterobacter), and immune response was assessed via AMP gene expression (Drosomycin, 

Diptericin), normalized to Actin 5C. 

Statistical analyses included alpha diversity (phyloseq), beta diversity (Bray-Curtis, 

PCoA), and differential abundance (DESeq2). PERMANOVA and ANOVA tested diversity 

changes. Metagenomic predictions used DeepNOG and COGdb on 

metagenome-assembled genomes (MAGs) to analyze functional shifts under Parkin 

overexpression. 

 

IV.3. Results  

Parkin overexpression modulates gut microbiome composition across different life 

stages in Drosophila, influencing the abundance of key bacterial genera over time. qPCR 

analysis of total 16S rRNA, Lactobacillus, Acetobacter, and Enterobacter at days 10, 30, 

45, and 60 compared microbiome dynamics between control (RU486-) and 

Parkin-overexpressing (RU486+) flies (Fig. IV.2a-d). 

Results showed an age-dependent effect of Parkin overexpression. In young flies 

(day 10, Fig. IV.2c, d), microbial abundance was higher in the Parkin-overexpressing 

group, suggesting an early-life role in supporting microbial diversity and gut homeostasis. 

By middle age (day 30), control flies exhibited increased levels of Enterobacter and 
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Lactobacillus, indicating a transitional phase in microbiome regulation. In older flies (day 

60, Fig. IV.2a, b, d), control flies retained a higher abundance of Acetobacter and 

Lactobacillus, while Parkin-overexpressing flies showed a reduction, suggesting that 

Parkin overexpression alters the gut environment, limiting bacterial persistence in aging 

hosts. 

 

 

Figure IV.2. Quantification of Bacterial Abundance in Parkin Overexpressing and 

Control Flies Across Ages. Bacterial abundance was measured using qPCR for (a) total 

16S gene, (b) Acetobacter, (c) Enterobacter, and (d) Lactobacillus. Samples were collected 

at four time points (days 10, 30, 45, and 60) from the daGS>UAS-Parkin strain, under two 

conditions: parkin overexpression (induced) and control (uninduced). Parkin 

overexpression was activated from day 1 of life. 
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To confirm that the microbiome changes observed were a direct result of parkin 

overexpression and not an artifact of RU486 treatment, a control strain was generated by 

crossing the W1118 line with the Ligand-Bound GeneSwitch driver (daGS). This 

W1118/daGS control strain was subjected to the same RU486 treatment protocol used to 

induce parkin expression in the experimental groups. Samples from the W1118/daGS 

control flies were collected at matched time points (days 10, 30, 45, and 60) to provide a 

reliable basis for comparison with the parkin-induced samples (Figure IV.3.). 

The results from this control indicated no significant difference in microbiome 

composition between untreated (uninduced) and RU486-treated (induced) flies, confirming 

that RU486 treatment alone did not alter microbiome structure. However, a subtle, 

age-related trend in microbiome composition was observed in the W1118/daGS control 

group, reflecting a natural shift in microbial populations as the flies aged. These findings 

suggest that, while aging impacts the gut microbiota composition, the specific microbiome 

shifts observed in the experimental group can be attributed to parkin overexpression rather 

than any unintended effects of RU486. This control approach strengthens the conclusion 

that parkin expression uniquely influences gut microbial dynamics across different ages. 

17 
 



 

Figure IV.3. Microbiome Composition in W1118 control and treated (RU486). 

Bacterial abundance was measured via qPCR for (a) total 16S gene, (b) Acetobacter, (c) 

Enterobacter, and (d) Lactobacillus. Samples were collected from the W1118/daGS control 

strain at four time points (days 10, 30, 45, and 60) under both control (untreated) and 

RU486-treated conditions. 

 

Alpha diversity was assessed using Observed Richness, Shannon Diversity, and 

Inverse Simpson Diversity to compare Whole Genome Sequencing (WGS) and 16S rRNA 

sequencing. 

16S rRNA sequencing detected more unique taxa, particularly in low-abundance 

samples (e.g., S01: 94 vs. 76 taxa, S08: 71 vs. 7 taxa), highlighting its greater sensitivity to 

rare taxa. Shannon and Inverse Simpson Diversity indices showed that WGS identified 

more evenly distributed microbial communities in early samples (S01, S02), while 16S 
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revealed greater diversity in later samples (S07, S08), suggesting WGS captured dominant 

taxa, whereas 16S provided a broader taxonomic profile. 

These results emphasize the complementary nature of both methods: 16S excels at 

detecting rare taxa, while WGS offers a more balanced view of community structure, 

making the choice dependent on specific research objectives. 

 

Figure IV.5. Alpha diversity metrics derived from Whole Genome Sequencing (WGS) 

and 16S rRNA gene sequencing across samples. Panels (a) and (b) showcase Observed 

richness, Shannon, and Inverse Simpson indices for WGS and 16S data, respectively, 

providing a comparative analysis of microbial alpha diversity. 
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 To better understand the differences in microbial communities, we analyzed the 

relative abundance of the 25 most prevalent bacterial taxa using both Whole Genome 

Sequencing (WGS) and 16S rRNA sequencing (Fig. IV.6.(a) and (b), respectively). These 

analyses highlight distinct microbial profiles across samples and demonstrate how each 

sequencing approach captures community composition differently. 

In the WGS dataset (Fig. IV.6.a), Acetobacter pasteurianus was the dominant 

species in samples S01 and S02, suggesting its strong presence in these microbial 

environments. On the other hand, Lactobacillus brevis was the most abundant taxon in 

sample S08, distinguishing it from the other samples. Interestingly, the 16S rRNA 

sequencing results (Fig. IV.6.b) also identified Lactobacillus brevis as a major component 

in S08, indicating a consistent pattern across both sequencing methods. This suggests that 

sample S08 has a distinct microbial signature, where Lactobacillus brevis plays a 

significant ecological role. 

The dominance of Lactobacillus brevis in S08 could be influenced by 

environmental factors, host interactions, or other selective pressures that support its growth 

in this sample. The agreement between WGS and 16S data for this taxon strengthens 

confidence in its biological relevance. 

Beyond individual species, these findings reveal clear differences in microbial 

composition across samples, reflecting how WGS and 16S sequencing provide 

complementary perspectives on community diversity. WGS captures a broader functional 

profile by sequencing entire genomes, while 16S remains effective for taxonomic 

classification, particularly for dominant bacterial groups. These results highlight the impact 

of sequencing methodology on microbiome studies and emphasize the importance of 

interpreting findings within the strengths and limitations of each approach. 
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Figure IV.6. Relative abundance of the 25 most prevalent bacterial taxa 

identified through Whole Genome Sequencing (WGS) and 16S rRNA gene 

sequencing. Panels (a) and (a) display the relative abundance (%) of the 25 most prevalent 

bacterial taxa, identified through Whole Genome Sequencing (WGS) and 16S rRNA gene 

sequencing, respectively. Taxa are color-coded according to the legend for clear 

visualization. 

 

WGS data identified 50 unique age-related genes, with distinct metabolic roles at 

each stage. At Day 10, genes linked to sulfur metabolism (SsuD), signaling (GGDEF), and 

ion transport (ZntA) were predominant. By Day 30, metabolic functions shifted toward 

oxidative metabolism (LpdA, Acs) and DNA replication (DnaE, GyrA). At Day 45, genes 

related to DNA repair (XerD, UvrA) and heavy metal resistance (ArsR) indicated 

adaptation to environmental stress. By Day 60, the microbiome prioritized cell wall 

maintenance (MltE), ion homeostasis (NhaP), protein folding (GroEL), and ATP synthesis 

(AtpF), suggesting a focus on cellular stability and energy production in late adulthood. 

These findings illustrate how microbial metabolism dynamically adapts to aging, 

with early-stage communities emphasizing growth and signaling, while older microbiomes 

shift toward stress resilience and maintenance. 
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Figure IV.10. Metabolic Function Prediction Across Samples. Panels (a)–(d) 

highlight the top 10 unique genes identified in each WGS sample, revealing key metabolic 

functions such as sulfur metabolism, DNA repair, energy production, and stress response. 

These findings suggest that microbial communities undergo functional adaptations at 

different ages. Panel (e) presents a Venn diagram illustrating the distribution of shared and 

unique genes across samples. This visualization highlights core genes that are common to 

multiple samples, as well as unique gene sets that reflect distinct metabolic requirements in 

each microbial community. 

 

While Parkin overexpression extends lifespan and supports mitochondrial function 

in Drosophila, its effects on the gut microbiome and host longevity remain unclear. This 

study examined how microbiomes from Parkin-overexpressing (OE) and control flies 

influence germ-free hosts. 

Canton-S flies were made germ-free via a 20-day antibiotic treatment, which had 

no impact on lifespan. After microbiome depletion, flies were exposed to microbiomes 

from control or Parkin-OE flies at days 10, 30, and 60. Lifespan analysis showed no 

difference for young (day 10) microbiomes, but middle-aged (day 30) and old (day 60) 

control microbiomes significantly shortened lifespan. In contrast, flies receiving 

microbiomes from Parkin-OE donors maintained longevity across all ages. 

These findings suggest Parkin overexpression preserves microbiome stability, 

preventing aging-associated microbial shifts that negatively impact lifespan. 
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Figure IV.13. Lifespan assay of Canton-S flies following microbiome 

reintroduction from control and induced parkin flies at different ages. This figure 

shows the lifespan assay of axenic Canton-S flies, reared on antibiotics for 20 days before 
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being reintroduced to microbiomes from control (uninduced) and Parkin-induced flies at 

days 10, 30, and 60, then maintained on standard food. (a) Verifies that antibiotic treatment 

alone does not affect lifespan. (b-d) Survival curves comparing flies reintroduced to control 

vs. induced microbiomes at young (10d), middle-aged (30d), and old (60d) stages. (e-f) 

Lifespan comparisons of flies receiving control vs. induced microbiomes across all age 

groups. 

We examined how microbiome transfer influenced immune response in Canton-S 

flies. After 10 days of microbiome feeding (days 20–30), flies were switched to a regular 

diet for five days before RNA extraction on day 35. Expression of antimicrobial peptides 

Drosomycin and Diptericin was measured to assess immune activation. 

Flies fed microbiomes from young (day 10) and middle-aged (day 20) 

daGS>UAS-Parkin flies showed similar AMP expression under both control and induced 

conditions. However, those receiving microbiomes from old (day 60) control flies had 

significantly higher Drosomycin and Diptericin levels than those given microbiomes from 

old Parkin-induced flies, suggesting pro-inflammatory changes in aging microbiomes. 

A similar pattern was observed in Canton-S flies fed their own age-matched 

microbiomes. Those fed middle-aged (day 20) microbiomes showed higher AMP 

expression than those fed young (day 10) microbiomes, indicating that microbiome aging 

may drive immune activation. These findings suggest that age-associated microbiome 

shifts can induce inflammation, with control flies’ microbiomes more likely to trigger 

immune activation than those from Parkin-induced flies. 

 

 
 

Fig. IV.14. Antimicrobial Peptide Assay. Assessment of Drosomycin (a) and 

Diptericin (b) levels in Canton-S flies following microbiome manipulation. 
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IV.5. Conclusions 

In this study, I investigated the impact of parkin overexpression on the gut 

microbiome composition in Drosophila melanogaster and its implications for host health 

across different life stages. By conducting a comparative analysis between parkin-induced 

and control flies over a 60-day period, I was able to observe how parkin expression 

modulates specific bacterial genera as the host ages. My approach included quantifying 

microbial abundance through qPCR for total 16S rRNA as well as specific bacterial taxa, 

such as Lactobacillus, Acetobacter, and Enterobacter, across multiple age points. The 

findings reveal that parkin overexpression dynamically influences the gut microbiome, 

enhancing microbial diversity in younger flies while reducing the abundance of certain 

bacteria in older flies. This age-dependent microbial shift suggests that parkin may play a 

regulatory role in maintaining a balanced gut environment, fostering beneficial microbial 

interactions during early life stages and selectively reducing specific bacterial populations 

with age. 

Furthermore, through microbiome transplant experiments, I assessed how these 

shifts in microbial composition affect lifespan and immune response in germ-free Canton-S 

flies. By reintroducing microbiomes from both parkin-induced and control flies into 

antibiotic-treated, axenic Canton-S flies, I demonstrated that microbiomes from aged 

control flies had a marked pro-inflammatory effect and reduced host lifespan. In contrast, 

the microbiome from parkin-induced flies did not trigger similar declines, underscoring the 

potential protective effect of parkin on gut microbial composition and host longevity. 

The study also highlights the diversity of microbiome compositions across samples, 

with Lactobacillus brevis emerging as a key taxon in S08. The consistency of WGS and 

16S results for L. brevis supports its ecological relevance in this sample, reinforcing the 

robustness of our sequencing approach. Interestingly, the presence of L. brevis in S08 

aligns with previous findings in C. elegans models, where this bacterium has been 

associated with enhanced stress resistance and lifespan extension (Thiruppathi et al. 2023; 

Kumar et al., 2022). The mechanisms underlying these effects, including modulation of 

oxidative stress and longevity-related signaling pathways, suggest that microbial 

composition may influence aging-related processes, potentially through interactions with 

the host's metabolic and immune systems. 

Additionally, I observed changes in microbial alpha and beta diversity that 

corresponded with parkin overexpression. These shifts, particularly the role of 

Commensalibacter, which was prevalent in the gut microbiome of younger flies, suggest 
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that parkin may influence not only microbial composition but also the functional 

capabilities of the gut microbiome over time. The distinct metabolic pathways associated 

with the parkin-induced microbiome, such as menaquinol-7 biosynthesis and nicotinate 

degradation, highlight the potential impact of parkin on host metabolic processes, likely 

contributing to enhanced energy homeostasis and cellular resilience. 

The integration of findings on L. brevis further supports the hypothesis that 

microbial composition plays a crucial role in aging-related processes. While direct 

extrapolation to Drosophila melanogaster requires further validation, the geroprotective 

properties of L. brevis observed in C. elegans provide compelling evidence that specific 

microbial taxa may influence host longevity through conserved metabolic and 

stress-response pathways. 

Moreover, this study is the first to explore how parkin overexpression influences 

gut microbial dynamics and its broader implications for host aging and longevity. The 

results provide valuable insights into the complex interplay between genetic factors and the 

microbiome, suggesting that parkin may regulate gut health and potentially mitigate 

age-related microbiome changes. Further research with larger sample sizes will deepen our 

understanding of these interactions, offering a clearer picture of how parkin-mediated gut 

microbiome modulation could be harnessed to support healthy aging. 
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