REZUMATUL TEZEI DE DOCTORAT

MECANISMUL DE DEGRADARE A PROTEINELOR
VIRUSULUI HEPATITEI B

COORDONATOR ȘTIINȚIFIC: DOCTORANDĂ:
DR. ȘTEFANA MARIA PETRESCU UȚĂ MIHAELA ECATERINA

BUCUREȘTI
2018
Cuprins (TEZA IN EXTENSO)

Lista figurilor .. 7

Lista tabelelor .. 8

Lista abrevierilor .. 9

Sumar ... 10

Capitolul I. Virusul hepatitei B ... 12
 1.1 Informații generale ... 12
 1.1.1 Scurt istoric .. 12
 1.1.2 Originea și clasificarea VHB .. 12
 1.1.3 Evoluția infecției cronice și diagnosticul VHB 13
 1.2 Ciclul de viață al VHB ... 15
 1.2.1 Internalizarea și transportul intracitosolic al VHB 15
 1.2.2 Conversia ADNrc la ADNccc .. 19
 1.2.3 Transcrierea ADNccc și translația proteinelor virale 19
 1.2.4 Transcrierea inversă a ARN-ului pregenomic în ADNrc 23
 1.2.5 Asamblarea și secreția particulelor virale .. 23
 1.3 Modele celulare utilizate în studiul VHB .. 25
 1.4 Terapii actuale și posibile noi ținte antivirale ... 27
 1.4.1 Profilaxie .. 27
 1.4.2 Imunomodulatori .. 27
 1.4.3 Inhibitori de replicare .. 28
 1.4.4 Noi ținte terapeutice .. 28

Capitolul II. VHB induce UPR, ERAD și autofagie .. 30
 2.1 Controlul calității proteinelor la nivelul RE ... 30
 2.2 Stresul RE indus de VHB .. 32
 2.3 Reducerea stresului la nivelul RE în celule infectate cu VHB 33
 2.4 Activarea ERAD indusă de VHB ... 35
 2.5 Autofagia indusă de VHB ... 36

Capitolul III. Materiale și metode... 40
Capitolul IV. Rezultate și discuții

4.1 Dezvoltarea unor linii celulare stabilce cu expresie constitutivă sau inductibilă pentru investigarea unor proteine implicate în calea ERAD cu potențial rol în ciclul de viață al VHB

4.1.1 Caracterizarea vectorilor de expresie și destinație

4.1.2 Caracterizarea liniilor celulare stabilce nou dezvoltate

4.2 Studiul infecției VHB în liniile celulare cu expresie modificată de EDEM

4.2.1 Degradarea proteinei virale în celulele HepaRG

4.2.2 Investigarea ciclului de viață al VHB în celulele HepaRG

4.2.3 Cinetica formării ADNccc în celulele HepaRG infectate cu VHB

4.2.4 Inhibitorii de manozidază împiedică formarea ADNccc în celulele infectate cu VHB

4.3 Generarea linei transgenice HepaRG pentru monitorizarea în timp real a diferențierii celulare și identificarea unor noi substraturi microstructurate de creștere celulară cu aplicații biomedicale
Scopul acestor studii

Infecțiile cronice ale ficatului induse de virusul hepatitei B (VHB) rămân factorul de risc principal al carcinomului hepatocelular (HCC), cu toate că un vaccin împotriva VHB eficient în proporție de 95% este disponibil începând cu anul 1982. Tratamentele antivirale curente cu inhibitori de polimerază virală sau imunomodulatori pot întârzierea progresia bolii și reduce mortalitatea causată de HCC. Cu toate acestea, eradicarea infecției cu VHB este imposibilă deoarece terapiile existente nu ținuc ADN-ul circular covalent închis (ccc), forma celulară a genomului viral responsabilă de persistența, latența și reactivarea virusului.

Glicoproteinele de suprafață virale sunt ținte ale răspunsului imun mediat celular și trebuie să fie degradate pentru a putea fi prezentate la suprafața celulară de către complexul major de histocompatibilitate I (CMHI) (Cascio et al., 2001). Un răspun imun slab împotriva epitopilor virali expuși la suprafața hepatocitelor infectate și acumularea de ADNccc în nucleul celulelor gazdă sunt factorii principali ce conduc la infecția cronică cu VHB. Procesul complex prin care se realizează sinteza și persistența ADNccc în celulele infectate nu este complet înțeles. În încercarea de a identifica factorii virali care pot contribui la menținerea infecției persistente, mai multe studii in vitro sugerează că proteinele de suprafață virale joacă un rol important în reglarea sintezei ADNccc (Summers, Smith și Horwich, 1990; Guo et al., 2007; Lentz și Loeb, 2011). Cu toate acestea, lipsa unui sistem natural robust de infeție cu VHB face dificilă determinarea căilor moleculare prin care se realizează formarea și amplificarea ADNccc. Pentru a aborda această problemă, este necesară o cunoaștere aprofundată a interacțiunilor complexe dintre virus și celula gazdă care conduc la infecții persistente. Înțelegerea mai bună a mecanismelor moleculare virale și celulare pot contribui la dezvoltarea unei terapii antivirale eficiente pentru eliminarea infecției cronice cu VHB.

Scopul acestei lucrări este de a studia rolul componentelor căii de degradare asociată cu Reticulul Endoplasmatic (ERAD) în interacțiunea cu proteinele de suprafață ale VHB și consecințele funcționale asupra virusului și a celulei gazdă infectate.

Această lucrare a avut ca obiective: 1) dezvoltarea și caracterizarea unor modele celulare in vitro susceptibile și permisive infecției cu VHB pentru a investiga factori celulari și virali implicați în ciclul de viață viral; 2) caracterizarea și identificarea mecanismelor moleculare realizate de infecția cu VHB și activarea căii ERAD; 3) evaluarea modelelor celulare nou dezvoltate pentru identificarea unor posibile strategii terapeutice împotriva VHB; 4) obținerea
unui model celular *in vitro* cu scopul de a monitoriza în timp real diferențierea celulelor în hepatocite.

Capitolul I. Virusul hepatitei B

VHB este un virus cu o anvelopă lipidică formată din trei proteine de suprafață ce înconjoară nucleocapsida și genomul viral (figura 1). În infecția fulminantă cu VHB, pe lângă particulele infecțioase, sunt prezente și particule virale neinfecțioase sub forma unor particule filamentoase sau sferice. Aceste particule neinfecțioase (abreviat SVP, de la „subviral particles”) sunt formate din proteine de suprafață virală fără a conține nucleocapside cu ADN viral, iar în timpul unei infecții naturale cu VHB au un conținut de până la 1,000-100,000 de ori mai mare față de numărul de particule infecțioase detectate (Ganem și Prince, 2004; Chai et al., 2008). Genomul viral constă într-un ADN parțial dublu-catenar (dc), relaxat-circular (rc) de 3.2 kiloperechi de baze (kbp) format dintr-o catenă negativă completă și o catenă pozitivă incompletă. Genomul viral codifică patru cadre suprapuse de citire deschise (abreviat ORF, de la „Open Reading Frame”) importante în traducerea proteinelor virale (Locarnini și Zoulim, 2010).

![Figura 1 Imagine schematică reprezentând particula infecțioasă (virionul) și particule neinfecțioase (SVP) ale VHB. În dreapta imaginii, virionul VHB cu dimensiunea de 42 nm este format dintr-o]
nucleocapsidă ce conține ADNrc și o anvelopă formată din trei proteine de suprafață S, M și L. În stânga, sunt reprezentate cele două tipuri de particule subvirale, în formă de sfere și filamente.

Interacțiunea specifică a VHB cu un receptor funcțional, a fost raportată de Yan și colaboratorii săi care au indentificat o proteină de transport a acizilor biliari (abreviat NTCP, de la „sodium-dependent Na+ taurocholate co-transporting polypeptide”) ce interacționează în mod specific cu fragmentul scurt (3-77 aa) din domeniul pre-S1 al proteinei L (Yan et al., 2013). Unul dintre mecanismele propuse de intrare a VHB mediată de receptor(i) prin membrana plasmatică este endocitoza dependență de caveole/clatrină (Macovei et al., 2010; Huang et al., 2012). Conform acestuia, VHB fuzionează la nivelul unui compartiment endozomal unde proteinele de suprafață sunt procesate pentru eliberarea și transportul nucleocapsidei la nucleu (Watashi et al., 2014). Nucleocapsida este „arestată” în compartimentul nuclear și dezasamblată pentru eliberarea genomului VHB (Kann, Schmitz și Rabe, 2007). Procesul biochimic prin care are loc „repararea” ADNccc din ADNrc este mediat de enzimele celulare (Gao și Hu, 2007; Nassal, 2015). Acest intermediar replicativ este organizat într-o structură de tipul unui minicromozom asociat cu proteine histonice (15-16 nucleozomi ai histonelor H2A, H2B, H3, H4 și un linker H1) și proteine non-histonice (proteinele virale C și X), aceste modificări epigenetice având o contribuție importantă în reglarea replicării VHB (Pollicino et al., 2006; Nassal, 2015). Molecula de ADNccc (3,2-kpb) este transcrisă cu ajutorul ARN-polimerazei II din celula gazdă pentru a produce două clase de transcripții virali, genomici și subgenomici, necesari sintezei de proteine virale și replicării VHB (Seeger și Mason, 2000). Transcripția celor 4 cadre de citire deschise, preC/C, P, S și X, existente în genomul VHB este reglată de patru promotori diferiți (C, preS1, preS2/S și X), doi enhanceri (Enh1 și Enh2) și de semnale de încapsidare și poliadelinare ce se suprapun cu cadrele de citire (Seeger și Mason, 2000; Quasdorff și Protzer, 2010). ARN pregenomic (ARNpg) rezultat prin inițierea transcrierii ORF-ului preC/C are un rol dublu, funcționează atât ca ARNm ce codifică pentru proteinele structurale, proteinele de capsidă (proteina „core” sau C) și polimeraza virală (proteina P), pentru o proteina non-structurală (antigenul HBe) cât și ca matriță pentru transcrierea inversă a catenei negative ADN viral. Transcripții subgenomici preS1, S și X funcționează exclusiv ca ARNm ce codifică pentru proteinele de anvelopă (L, M, S) și pentru proteina X (Glebe și Bremer, 2013). Procesul de transcriere inversă al ARNpg este inițiat simultan cu procesul de încapsidare de către proteina P ce interacționează cu o structură sub formă de buclă stem (ε) din capătul 5’ al ARN-ului pregenomic (Beck, Bartos și Nassal, 1997; Nassal, 2015). Concomitent cu sinteza catenei negative, ARNpg este degradat prin activitatea RN-azei H a
polimerazei virale (P), exceptând o secvență scurtă (17 nucleotide ARN) din capătul 5' al ARNpg care va servi ca primer pentru sinteza catenei pozitive (Wang și Seeger, 1992; Jones și Hu, 2013). După elongarea catenei pozitive, capsida matură va conține ADNrc. Aceste capside virale vor fi transportate la nucleu sau vor fi anvelopate și exportate în mediul extracelular.

Capitolul II. VHB induce UPR, ERAD și autofagie

În timpul unei infecții virale productive, funcția normală a RE este perturbată de sinteza unei cantități mari de proteine virale care trebuie monitorizată de mecanisme de control ale calității proteinelor. Pentru a contracara stresul de la nivelul RE, celulele induc activarea unui mecanism de „răspuns la proteinele nepliate” (abreviat UPR, de la “Unfolding Protein Response”) în care sunt implicate multiple căi de semnalizare ce cresc capacitatea proteinelor de pliere, blochează traducerea proteinelor și degradează proteinele incorrect pliate (Lazar, Uta și Branza-Nichita, 2014). ERAD este asociată la nivel funcțional cu UPR pentru a extrage din RE proteinele incorrect pliate în citosol pentru degradarea proteazomală. Mai multe studii sugerează că infecțiile virale pot modula UPR pentru a iniția replicarea și persistența virală în celulele infectate (Urano et al., 2000; Li et al., 2007). Proteinele de suprafață ale VHB activează UPR conducând la procesul de autofagie, acesta fiind implicat în anveloparea nucleocapsidelor și în secreția de particule virale. Activarea căilor IRE1 are ca rezultat supra-exprimarea proteinelor EDEM, reducând nivelul proteinelor de suprafață virale, ceea ce poate contribui la persistența și infecția cronică cu VHB. Dovezile recente acumulate demonstrează clar că VHB induce stres la nivelul RE activând UPR, ERAD și autofagie, însă consecințele acestei activări atât asupra celulei gazdă, cât și asupra ciclului de viață viral necesită viitoare investigații.

Capitolul III: Materiale și Metode

Au fost generate linii celulare stabile HepaRG și Huh7 cu expresie constitutivă sau inductibilă a proteinelor EDEM și caracterizate din punct de vedere funcțional și biochimic. Ciclul de viață viral a fost investigat în liniile celulare infectate cu VHB, linia HepaRGEDEM3 care supra-exprimă proteina EDEM3 și linia control HepaRGC care exprima un nivel endogen al proteinelor EDEM, prin cuantificarea transcripțiilor, nucleocapsidelor și a proteinelor virale.
Experimente de cinetică privind acumularea de ADNccc în cursul infecției au fost monitorizate în prezența sau în absența kifunensinei, un inhibitor puternic al manozidazelor.

Pentru o monitorizare în timp real a diferențierii celulare s-a dezvoltat o nouă linie celulară HepaRG^{DsRed} care exprimă o genă raportor fluorescentă sub controlul unui promotor specific hepatocitelor. În continuare, am utilizat un polimer sintetic de polidimetilsiloxan (PDMS) microstructurat în gradient pentru a permite manipularea tridimensională in vitro și monitorizarea procesului de diferențiere a celulelor HepaRG^{DsRed} în timp real.

Capitolul IV. Rezultate și discuții

Studiul infecției VHB în liniile celulare cu expresie modificată de EDEM

Într-o primă abordare, am urmărit efectele induse de proteinele EDEM asupra proteinelor de suprafață a VHB cu posibil rol în stabilirea unei infecții productive. A fost observată o creștere semnificativă a transcriptiilor și a nucleocapsidelor virale (figura 2A și B) în celulele cu expresie crescută de EDEM3, rezultat corelat cu acumularea ADNccc (figura 3) și secreția virală.
Figura 2. Infecția cu VHB în liniile celulare stabile HepaRG. (A) ARN total a fost purificat din celule HepaRGEDEM3 și HepaRGC infectate cu VHB colectate în ziua 14 post-infecție (pi) și cuantificat prin transcriere inversă PCR (RT-qPCR). Rezultatele obținute în urma a trei experimente independente au fost normalizate la valorile GAPDH și analizate prin testul statistic parametric, Student t test (*, P < 0.05). (B) Nivelul proteinelor de capsidă a fost investigat în celule HepaRGEDEM3 și HepaRGC infectate cu VHB prin microscopie de imunofluorescență, în ziua 14 pi. Imaginile au fost analizate cu microscopul inversat Zeiss AxioImager.Z1. Cuantificarea celulelor pozitive pentru proteina de capsidă a fost efectuată utilizând programul TissueQuest Cell Analysis v4.0. Valorile obținute sunt prezentate sub panel. Bara de scalare este de 50 μm.

Pentru a investiga mai detaliat acumularea ADNccc în celulele cu expresie crescută de EDEM, cele două linii celulare HepaRGEDEM3 și HepaRGC au fost monitorizate periodic în timpul infecției productive. O creștere importantă a numărului de copii ADNccc a fost observată în celulele HepaRGEDEM3, în primele 4 zile ale infecției (figura 4A) și confirmat prin analiza semicantitativă (figura 4B). Interesant, odată ce a ajuns la acest nivel, ADNccc a devenit stabil pe parcursul infecției. Acest date sugerează că evenimentele care apar în fază incipientă a infecției au o importanță majoră în acumularea de ADNccc observată. Acumularea puternică de ADNccc în prezența EDEM3, secreția SVP-urilor cât și a virionilor anveloapați semnificativ crescută în timpul infecției confirmă încă odată efectul important al proteinei EDEM3 în ciclul de viață al VHB (figura 4C și D).

Figura 3. Formarea ADNccc în liniile celulare stabile HepaRG infectate cu VHB. Extrația ADN viral prin metoda adaptată după Hirt din celule HepaRGEDEM3 și HepaRGC infectate cu VHB au fost colectate în ziua 14 pi. Probele ADN au fost cuantificate prin PCR în timp real folosind primeri specifiși față de
ADNccc. Rezultatele obținute din trei experimente independente au fost analizate utilizând testul statistic parametric, Student t test (*, P < 0.05).

Figura 4. Cinetica infecției cu VHB în liniile celulare stabile HepaRG. (A-D) Fracțiile citoplasmatice și nucleare au fost izolate din celule HepaRG^{EDEM3} și HepaRG^C infectate cu VHB la diferite zile, după cum este indicat în figură. (A) Formarea de ADNccc a fost analizată prin PCR în timp real sau (B) PCR semicantitativ, utilizând expresia GAPDH ca martor de încărcare și o curbă standard formată din diluții seriale cu cantități cunoscute de ADN plasmidal VHB. Secreția SVP-urilor (C) și a virionilor anveloși (D) a fost determinată prin ELISA și imunoprecipitare urmată de PCR în timp real. Rezultatele reprezintă datele și deviațiile standard obținute din două experimente independente.
Figura 5. Infecția cu VHB în prezența inhibitorilor de manozidază. Celulele HepaRG\(^G\) (A, C) și HepaRG\(^{EDEM3}\) (B, D) au fost infectate cu VHB și tratate cu 20 µM kifunensină pentru perioadele indicate sau netratate reprezentând controale. Celulele au fost colectate în ziua 14 pi. (A, B) ADN-ul viral a fost extras din celule folosind metoda după Palumbo și colaboratorii, 2015. Probele ADN au fost cuantificate prin PCR în timp real folosind primeri specifci ADNccc. Rezultatele obținute din trei experimente independente au fost analizate utilizând testul statistic parametric, Student \(t\) test (*, \(P < 0,05\); **, \(P < 0,01\); ***, \(P < 0,001\)). (C, D) Nucleocapsidele intracelulare au fost purificate din celulele infectate iar ADN-ul
viral a fost quantificat prin PCR în timp real. Rezultatele reprezintă datele și deviațiile standard de la două experimente independente.

Acumularea ADNccc a fost inhibată în mod semnificativ prin tratamentul cu kifunensină în fazele incipiente ale infecției virale. A fost observată o reducere cu 80% a numărului de copii ADNccc în linia celulară control, respectiv 60% în linia celulară care supra-exprimă EDEM3 comparativ cu celule netratate (figura 5A și B). Acest efect a fost confirmat prin cuantificarea nucleocapsidelor VHB în ambele linii celulare (figurile 5C și D). Tratamentul celulelor cu kifunensină în intervalul 8-14 dpi inhibă mai puțin eficient acumularea de ADNccc, sugerând că procesul de formare ADNccc în faze incipiente ale infecției depinde de activitatea α1,2-manozidazelor.

Generarea liniei transgenice HepaRGDsRed pentru monitorizarea în timp real a diferențierii celulare și identificarea unor noi substraturi microstructurate de creștere celulară cu aplicații biomedicale

În al doilea studiu, am obținut un model celular in vitro (figura 6A și B) ce permite gruparea controlată a celulelor de tip hepatocit menținute în cultură pentru perioade lungi de timp fără pierderea fenotipului. Monitorizarea în timp real a liniei celulare HepaRGDsRed a permis identificarea unor parametri topografici care influențează diferențieria celulară.

Intensitatea fluorescenței celulelor HepaRGDsRed însămânțate pe microcipurile de PDMS a fost investigată prin analiza citometrică TissueFAXS. Această analiză indică o aderență preferențială, răspândirea și gruparea celulelor depinde atât de structura topografiei (linii, piramide, semisfere, conuri) cât și de caracteristicile concave sau convexe ale topografiei, comparativ cu materialul PDMS nestructurat sau cu alte substraturi standard utilizate în culturile celulare (figura 7A). Prin analiza microscopică, a fost observată relația dintre diferitele topografii și morfologia celulară și s-a constatat că anumite forme topografice pot influența comportamentul de creștere celulară. Structuriile în formă de linii U inverse (ABC/ 456) și șanțurile în formă de V (ABC/ 789) au favorizat semnificativ diferențierea celulară prin comparație cu diferitele controale, într-o manieră dependentă de diametru (figura 7B). Acest rezultat sugerează că o topografie cu un diametru mai mare decât dimensiunea unei celule (aproximativ 15-20 µm), favorizează aderenția și gruparea celulară activând diferențierea. Pe de altă parte, diametrele mai mici pot favoriza mobilitatea celulară dacă geometria îngustă va
împiedica celulele să se conecteze între ele în mod eficient. Celulele cultivate pe structuri de tip piramide inversate cu o adâncime de 5 µm și diametru de 5, 10 și 25 µm (DEF/456) au exprimat o creștere a intensității fluorescenței pe măsură ce diametrul scade (figura 7B). În acest caz, diametrele mai mici ale piramidelor inversate par să sprijine atașarea celulelor și a joncțiunilor dintre celule peste marginile structurii. Diametrele mai mari ale piramidelor inversate pot induce captarea celulelor în interiorul structurilor, reducând astfel conectivitatea intercelulară.

Figura 6. Generarea liniei celulare stabile HepaRG^{DsRed}. (A) Reprezentarea schematică a constructului pLenti EIIPa1AT-DsRed utilizat pentru transducția celulelor HepaRG și a celulelor control. (B) Celulele Me290, HeLa și HepaRG la 10 zile post-transducție au fost scanate cu sistemul TF iar imaginile reprezentative au fost luate cu un obiectiv 20x. Imaginile capturate în câmp luminos și pe canalul TxRed au fost suprapuse. (C) HepaRG^{DsRed} diferențiate timp de 18 zile, în absența (-) sau prezența de 1,8% DMSO la diferență de 4 zile (+). Aceeași zonă celulară a fost monitorizată pentru observarea modificărilor în cursul diferențierii la nivelul fluorescenței iar imaginile au fost capturate în același mod descris anterior, folosind un obiectiv 5x. Grupurile de celule de tip hepatocit pot fi observate prin marginile înconjurate.
Figura 7. Topografia cipului de PDMS influențează diferențierea celulară. (A, B) Celulele HepaRG^{DsRed} însămânțate pe substratul de PDMS microstructurat și menținute până la 25 de zile, în absența DMSO au fost monitorizate periodic. Imagini reprezentative achiziționate în câmp luminos și pe canalul T_xRed
și achizitionate cu sistemul TissueFAXS, în ziua 14 după însămânțare. Triunghiul negru indică gradientul modelului geometric. Bara de scalare reprezintă 50 µm.

Concluzii și perspective

În prezentul studiu am caracterizat aspectele moleculare ale infecției cu VHB prin dezvoltarea unor modele celulare in vitro. Pentru a studia interacțiunile gazdă-patogen, expresia unor proteine de interes a fost modulată în linia celulară HepaRG, permissivă infecției cu VHB. Impactul acestor proteine țintă asupra VHB a fost evidențiat prin analiza fiecărei etape a ciclului viral.

Concluziile generale ale acestor studii sunt:

1. Celulele HepaRG care exprimă stabil EDEM3 reprezintă un sistem robust și reproductibil ce a permis analiza primelor etape din ciclul de viață a VHB. Degradarea semnificativă în aceste celule a condus la o acumulare crescută a transcriptiilor, nucleocapsidelor și proteinelor virale.
2. Degradarea proteinelor de suprafață ale VHB indusă de proteinele EDEM, indiferent de stadiul lor de pliere, reprezintă un mecanism celular important implicat în formarea de ADNccc imediat după internalizarea virusului ceea ce poate asigura persistența infecției. Această ipoteză este susținută de inversarea acestui efect, prin inhibarea degradării, identificându-se astfel un potențial agent antiviral cu rol în țintirea ADNccc.
3. Monitorizarea în timp real a liniei celulare transgenică HepaRGDsRed s-a dovedit a fi un instrument extrem de util în identificarea de materiale capabile să inducă diferențierea mai eficientă, cu potențial rol în aplicații biomedicale.

Studiul efectuat a permis:

1. Elaborarea unui model prin care proteinele EDEM ar putea regla infecția VHB.

Mecanismul propus este următorul: în stadiile incipiente ale infecției cu VHB, nivelul proteinelor de suprafață fiind scăzut, o mare parte dintre acestea sunt îndepărtate din RE imediat după sinteză (1), astfel fiind favorizat traficul nucleocapsidelor mature și "recircularizarea" nucleară (2), permițând formarea moleculelor de ADNccc (3) asigurând persistența infecției. Când moleculele de ADNccc sunt amplificate la un nivel
suficient (5), nucleocapsidele intracelulare vor fi în anvelopate (6) și secrete ca virioni infecțioși (7). În aceste etape târzii ale infecției, degradarea proteinelor poate fi atenuată sau contrabalansată de o sinteză crescută a proteinelor de suprafață ca urmare a unui număr mare de copii ADNccc, astfel încât virusul și producția de SVP-uri nu mai sunt afectate.

2. Propunerea de noi strategii terapeutice pentru infecția cu VHB.

Tratamentul cu kifunensină în stadiile incipiente ale infecției a determinat o inhibiție semnificativă a formării de ADNccc. Este important de menționat că inhibitori ai altor enzime rezidente în RE, cum ar fi α-glucozidazele I și II, induc degradarea proteinelor...
și este cunoscută activitatea lor antivirală asupra unor virusuri, printre care și VHB (Simsek et al., 2005). Cu toate acestea, astfel de inhibitori induc degradarea proteinelor printr-un mecanism diferit care implică plierea incorectă a proteinelor, care în cazul VHB este în mare măsură limitată de proteina M, fiind cea mai dependentă de proteinele chaperon de tip lectine ale RE pentru plierea corectă a celor trei protine de suprafață (Prange, Werr și Löffler-Mary, 1999). Aceasta are consecințe asupra etapelor târzii ale ciclului de viață viral, cum ar fi asamblarea și traficul viral conducând la reducerea semnificativă a secretei de VHB și formarea virionilor mai puțin infectioși (Prange, Werr și Löffler-Mary, 1999). Într-o perspectivă viitoare, sunt necesare studii ce vor aborda eficiența altor inhibitori ai manozidazelor cât și a derivaților acestora de a bloca infecția cu VHB.

3. Identificarea unor substrate noi pe bază de PDMS care ar putea accelera procesul de diferențiere celulară.

În această lucrare, am propus utilizarea unui raportor fluorescent specific hepatocitelor pentru a identifica noi substraturi celulare capabile să mărească eficiența diferențierii celulelor HepaRG. Această analiză a fost efectuată în timp real, prin monitorizarea continuă a nivelului de fluorescență în celulele vii, fiind un avantaj important față de alte sisteme, cum ar fi luciferaza sau β-galactozidaza, care necesită liza celulară și măsurarea activității enzimatiche pentru a determina nivelul de expresie genică. Pe baza acestor proprietăți, au fost identificate diferite microstrucruri de PDMS care favorizează în mod clar gruparea celulelor și diferențierea în hepatocite. Studii viitoare vor aborda fabricarea la scară mai mare a acestor substraturi pentru a investiga procesul de diferențiere la nivel molecular.
Lista lucrărilor publicate

Această teză se bazează pe următoarele studii:

Citări Scopus: 19

h-index: 2

Postere selectate:

Mulțumiri

Realizarea acestei lucrări a fost posibilă cu ajutorul mai multor persoane, cărora doresc să le mulțumesc pentru sprijinul și ajutorul generos acordat pe tot parcursul anilor.

Aș dori să-mi exprim recunoștința față de Dr. Ștefana Petrescu și Dr. Norica Brânză-Nichita pentru că mi-au oferit posibilitatea de a-mi realiza studiile de doctorat prin abordarea unui subiect atât de interesant. Vă mulțumesc foarte mult pentru toate încurajările, pentru împărtășirea cunoștințelor și recomandărilor științifice care m-au ajutat în abordarea experimentală.

A fost întotdeauna o mare plăcere să lucrez cu colegii mei din Institutul de Biochimie și vă mulțumesc mult pentru ajutor, susținere și discuțiile foarte productive. Le mulțumesc actualilor și foștilor mei colegi din departamentul de Glicoproteine Virale, Dr. Cătălin Lazăr, Dr. Alina Macovei și Dr. Costin Ioan Popescu pentru îndrumarea și asistența tehnică pe care mi-au acordat-o la începutul stagiului de doctorat.

Aș dori să-i mulțumesc colegei mele, Dr. Gabriela Chirițoiu, pentru obținerea stocurilor retrovirale ce conțin ADNc față de proteinele EDEM. Mulțumiri speciale aș dori să le adresez Dr. Livia Sima pentru suportul tehnic oferit în analizele de sortare celulară și a datelor obținute prin TissueFAXS. De asemenea, aș dori să-i mulțumesc Dr. Simona Ghenea pentru asistența acordată la achiziționarea imaginilor de microscopie.

Aș dori să-i mulțumesc Dr. Valentina Dincă și Prof. Dr. Patrik Hoffmann pentru pregătirea și caracterizarea microcipurilor de PDMS.

În cele din urmă, mulțumesc și sunt profund recunoscătoare familiei și prietenilor mei, pentru înțelegerea și suportul moral permanent.
Bibliografie

